Skip to content

Formulae

$\gdef \N{\mathbb{N}} \gdef \Z{\mathbb{Z}} \gdef \Q{\mathbb{Q}} \gdef \R{\mathbb{R}} \gdef \C{\mathbb{C}} \gdef \setcomp#1{\overline{#1}} \gdef \sseq{\subseteq} \gdef \pset#1{\mathcal{P}(#1)} \gdef \covariant{\operatorname{Cov}} \gdef \of{\circ} \gdef \p{^{\prime}} \gdef \pp{^{\prime\prime}} \gdef \ppp{^{\prime\prime\prime}} \gdef \pn#1{^{\prime\times{#1}}} $

Sentential Logic

Equivalences

Name Formula Notes
E1 \(R \lor \Bbb T \iff \Bbb T\)
E2 \(R \lor \Bbb F \iff R\)
E3 \(R \land \Bbb F \iff \Bbb F\)
E4 \(R \land \Bbb T \iff R\)
E5 \(R \lor R \iff R\) Idempotent Law
E6 \(R \land R \iff R\) Idempotent Law
E7 \(R \lor (\neg R) \iff \Bbb T\) Tautology
E8 \(R \land (\neg R) \iff \Bbb F\) Contradiction
E9 \(\neg (\neg R) \iff R\) Double Negation Law
E10 \(R \lor S \iff S \lor R\) Commutative Law
E11 \(R \land S \iff S \land R\) Commutative Law
E12 \(R \lor (S \lor Q) \iff (R \lor S) \lor Q\) Associative Law
E13 \(R \land (S \land Q) \iff (R \land S) \land Q\) Associative Law
E14 \(R \lor (S \land Q) \iff (R \lor S) \land (R \lor Q)\) Distributive Law
E15 \(R \land (S \lor Q) \iff (R \land S) \lor (R \land Q)\) Distributive Law
E16 \(\neg (R \lor S) \iff (\neg R) \land (\neg S)\) De Morgan’s Law
E17 \(\neg (R \land S) \iff (\neg R) \lor (\neg S)\) De Morgan’s Law
E18 \(R \lor (R \land S) \iff R\) Absorption Law
E19 \(R \land (R \lor S) \iff R\) Absorption Law
E20 \(R \rightarrow S \iff (\neg R) \lor S\) Implication Law
E21 \(R \rightarrow S \iff (\neg S) \rightarrow (\neg R)\) Contrapositive Law
E22 \(R \leftrightarrow S \iff (R \rightarrow S) \land (S \rightarrow R)\) Biconditional Law
E23 \(R \rightarrow (S \rightarrow Q) \iff (R \land S) \rightarrow Q\) Exportation Law