12. Normal Distribution
Standard Normal Distribution¶
Definition¶
\(Z=N(0,1)\), where \(0=\mu=E[Z]\), and \(1=V(Z)=\sigma^2\).
\(f(x)=\frac1{\sqrt{2\pi}}e^{\frac{-x^2}2}\)
\(F(x)=P(Z\le X)=\int_{-\infty}^xf(t)dt=\Phi(x)\)
Use chart for \(\Phi\), because we don’t have a formula.
General Normal Distribution¶
Consider the function \(f(x)=\frac1{\sqrt{2\pi}}\)
if \(X=N(\mu,\sigma^2)\), \(Z=\frac{X-a}{b}\sim N(0,1)\)