Skip to content

03. Differentiability and Derivatives

$\gdef \N{\mathbb{N}} \gdef \Z{\mathbb{Z}} \gdef \Q{\mathbb{Q}} \gdef \R{\mathbb{R}} \gdef \C{\mathbb{C}} \gdef \setcomp#1{\overline{#1}} \gdef \sseq{\subseteq} \gdef \pset#1{\mathcal{P}(#1)} \gdef \covariant{\operatorname{Cov}} \gdef \of{\circ} \gdef \p{^{\prime}} \gdef \pp{^{\prime\prime}} \gdef \ppp{^{\prime\prime\prime}} \gdef \pn#1{^{\prime\times{#1}}} $

May 8 Lecture. Links to the board and the recording.
What does this stuff do?
If you have a function \(y=f(x)\), we want to be able to calculate the slope of a line that is tangent to a point on the graph.
We seek a derivative function \(f^\prime(x)\) such that
\(f^\prime(x_0)=\) slope of line tangent to graph \((y=f(x))\) at the point \((x_0,f(x_0))\).

Why are we interested, and how do we find this?
Background:
What is a tangent line to a graph?
Let’s take the following example:
Pasted image 20230508150235.png
Let \(x=time\).
Let \(f(x) =\) distance traveled by time \(x\).
Speed = \(\frac{distance}{time}\).
If \(f(2)=1\), \(f(3)=4\), then my speed over time interval \([2,3]\) is \(\frac{f(3)-f(2)}{3-2}\).
I.E. \(\frac{\Delta y}{\Delta x} = 3 \Rightarrow \text{ slope of line connecting } (2, f(2)) \text{ and } (3, f(3)).\)
Slope represents the rate of change as in this example.


What would the speedometer show at \(x=3\)?
Idea: let’s take shorter and shorter intervals around \(x=3\) and see what the slope for that line is. Each slope is a rate of change (ROC) of \(f\) over a smaller and smaller interval \([x,3]\). Define the Instantaneous Rate of Change (IRoC) at \(x=3\) to be the limit of these slopes.

\[\lim_{x\to x_0}{\frac{\Delta y}{\Delta x} = \lim_{x\to x_0}{\frac{f(x_0)-f(x)}{x_0 - x}}}\]

Or, if we express \(x=x_0 + h\), IRoC at \(x_0 = \lim_{h\to 0}{\frac{f(h_0+h)-f(x_0)}{h}}\)
The tangent line to \(y=f(x)\) at \(x=x_0\) is defined as the line through \((x_0, f(x_0))\) with this slope.

Definitions:
  1. \(f(x)\) is differentiable at the point \(x=x_0\) if the limit \(\lim_{h\to 0}{\frac{f(x_0+h)-f(x_0)}{h}}\) exists.
  2. \(f(x)\) is differentiable from the left if \(\lim_{h\to 0^-}{\frac{f(x_0+h)-f(x_0)}{h}}\) exists.
  3. \(f(x)\) is differentiable from the right if \(\lim_{h\to 0^+}{\frac{f(h_0+h)-f(x_0)}{h}}\) exists.

    • \(f\) is differentiable at \(x_0\) \(\iff\) \(f\) is differentiable from left and from right at \(x_0\) and these limits are equivalent.

    • Example: Graph \(y=|x|\). Is x differentiable at \(x=0\)?
      From the left: \(\lim_{h\to 0^-}{\frac{f(h)-f(0)}{h}}\) = \(\lim_{h\to 0}{\frac{-h}{h}}=-1\). Note, \(h<0\), so \(|h|=-h\)
      From the right: \(\lim_{h\to 0^+}{\frac{f(h)-f(0)}{h}}=1\)
      Hence, \(f(x)=|x|\) is differentiable from each side at \(x_0=0\), but is not differentiable there.

  4. \(f\) is differentiable in open interval \((a,b)\) if f is differentiable at each pt. in that interval

  5. If \(f\) is differentiable in \((a,b)\) then the derivative of \(f\) on \((a,b)\) is defined as (for \(x_0\in(a,b)\)): \(f^\prime(x_0)=\lim_{h\to 0}{\frac{f(x_0+h)-f(x_0)}{h}}\)

One sided derivatives are defined similarly to definitions 2 & 3.

The derivative function \(f^\prime\) is defined for any \(x_0\) in this manner:

\[f^\prime(x)=\lim_{h\to 0}{\frac{f(x+h)-f(x)}{h}}\]
Theorem 31:

Theorem

If x is differentiable at \(x_0\), then x is continuous at \(x_0\). The reverse is not true.
Intuitively, \(f^\prime (x)=\frac{\Delta y}{\Delta x}\) as \(\Delta x \to 0\) Since denominator is going to zero, this fraction has a limit only if \(\Delta y\to 0\) too, i.e. \(f\) is continuous at \(x_0\).

Linear Approximation using derivatives:

If one would want to calulate \((1.0123)^2\)

\(f^\prime(x)=\lim_{h\to 0}{\frac{f(x+h)-f(x)}{h}}\).

I.e., for small \(h\): \(f^\prime (x) \approx \frac{f(x+h)-f(x)}{h}\)

For smaller h, the approximation is more exact.

\(f(x+h)\approx f(x)+h\cdot f^\prime (x)\).
Pasted image 20230508154358.png

\[\begin{aligned}\text{In our example: }(1.0123)^2 \approx 1^2 + (0.0123)\cdot 2 &= 1.0246\\\text{Real Answer: }(1.0123)^2 &= 1.02457\end{aligned}\]

(We multiply by 2, because the derivative of \(f\) is \(2x\))

Differentiation Rules
  1. Derivative of a constant function \(f(x)=c\) is zero.
    • \(f(x)=c\) is differentiable everywhere, and \(f^\prime(x)=0\)
  2. If \(f\) and \(g\) are differentiable at \(x_0\), so is the function \(f+g\), and \((f+g)\prime(x_0)\) = \(f^\prime(x_0) + g\prime(x_0)\).
    • The derivative of a sum of functions at a point is the sum of the derivatives of functions at a point.
  3. if f is differentiable at \(x=x_0\) and c is any real number, then cf is diff. at \(x_0\), and \({(c\cdot f)}^\prime = c\cdot f^\prime\).

May 8 Tirgul. Links to the board and the recording.

Some Derivative Functions

\(f(x)=x^3\) (in general, \(f(x) = x^n\) for \(n\in\N\))
\(f^\prime(x)=\lim_{h\to0}{\frac{ {(x+h)}^3-x^3}h}\)
\(=\lim_{h\to0}{\frac{x^3+3x^2h+3xh^2+h^3-x^3}{h}}\)
\(=\lim_{h\to0}{\frac{3x^2h+3xh^2+h^3}{h}}\)
\(=\lim_{h\to0}{\frac{h\cdot(3x^2+3xh+h^2)}{h}}\)
\(=\lim_{h\to0}{3x^2+3xh+h^2}\)
\(=3x^2 \Rightarrow f^\prime(x)=3x^2\)

In general
if \(f(x) = x^n\) for \(n\in\N\),

\[\begin{align} f^\prime(x)&=\lim_{h\to0}{\frac{{(x+h)}^n-x^n}{h}} \\&=\lim_{h\to0}{\frac{nx^{n-1} + \text{terms where power of h ≥ 2}}{h}} \\&=\lim_{h\to0}{\frac{nx^{n-1} + h\cdot[\text{terms where power of h $\ge$ 2}]}{h}} \\&=\lim_{h\to0}{nx^{n-1} + [\text{terms where power of h $\ge$ 1}]} \\&=\lim_{h\to0}{nx^{n-1} + [\text{terms $\to$ 0 as }h\to0]} \\&=nx^{n-1} \end{align}\]

E.g. \(f(x) = x^5\Rightarrow f^\prime(x)=5x^4\)


May 10 Lecture. Links to the board and the recording.

Rules of Differentiation:
  1. \(f(x)=c\Rightarrow f^\prime(x)=0\)
  2. \({(c\cdot f)}^\prime(x)=c\cdot f^\prime(x)\)
  3. \({(f\pm g)}^\prime(x)=f^\prime(x)\pm g^\prime(x)\)
  4. \({(f\cdot g)}^\prime(x)=f(x)\cdot g^\prime(x)+f^\prime(x)\cdot g(x)\)
    Product Rule
  5. \({(\frac fg)}^\prime(x)=\frac{f^\prime(x)\cdot g(x)-f(x)\cdot g^\prime(x)}{{\left[g(x)\right]}^2}\)
    Quotient Rule
Chain Rule

Used to differentiate composed function \(f(g(x))\)
Definition:

\[{(f\of g)}^\prime=f^\prime(g(x))\cdot g^\prime(x)\]

Examples

\({(\sqrt{\sin x})}^\prime=\frac{1}{2\sqrt{\sin x}}\cdot\cos x=\frac{\cos x}{2\sqrt{\sin x}}\)

\({({(5x^2-3x+2)}^5)}^\prime=5{(5x^2-3x+2)}^4\cdot(10x-3)\)

Applications of the Chain Rule:
  1. \({(x^{\frac pq})}^\prime=\frac pq x^{\frac pq -1}\)
  2. Given \(f(x)\), (who’s derivative \(f^\prime\) we know), what is derivative of \(f^{-1}\)?

    • We find formula here, this is known as the Inverse Function Rule:
    \[{\left[f^{-1}(x)\right]}^\prime=\frac1{f^\prime(f^{-1}(x))}\]
    • Ex. \(f(x)=\ln x\Rightarrow f^\prime(x)=\frac1x\qquad \text{What's derivative of }f^{-1}(x)=e^x\)?
      • \({(e^x)}^\prime=\frac1{\frac1{e^x}}=e^x\)
    • \(f(x)=\tan x\Rightarrow f^\prime(x)=\frac1{\cos^2x}\qquad \text{What's derivative of }f^{-1}(x)=\arctan x\)?
      • \({(\arctan x)}^\prime=\frac1{\frac1{\cos^2(\arctan x)}}=\cos^2(\arctan x)\Rightarrow\)lots of math\(\Rightarrow\frac1{x^2+1}\)
    • \(f(x)=x^2\Rightarrow f^\prime(x)=2x\qquad \text{What's derivative of }f^{-1}(x)=\sqrt x\)?
      • \({(\sqrt x)}^\prime=\frac1{2\sqrt x}\)

May 15 Lecture. Links to the board and the recording.

Other useful derivatives:

\(f(x)=2^x\) (in general: \(f(x)=a^x\mid (a>0)\))
Recall: \(2=e^{\ln2}\Rightarrow2^x={(e^{\ln2})}^x=e^{x\ln2}\)
This is a composed function \((g\of h)(x)\) where \(h(x)=x\cdot\ln2\) and \(g(x)=e^x\).
So, we apply the Chain Rule to get \(e^{x\cdot\ln2}\cdot\ln2\Rightarrow\ln2\cdot 2^x\)

In general:

\(f(x)=a^x\Rightarrow f^\prime(x)=(\ln a)\cdot a^x\)
\(f(x)=\log_2(x)\) (in general: \(f(x)=\log_a(x)\mid(a>0,a\not=1)\))
Use the Inverse Function Rule:
Let \(f(x)=a^x\), so that \(f^{-1}(x)=\log_ax\).
\({(\log_ax)}^\prime=\frac1{f^\prime(f^{-1}(x))}=\frac1{\ln a\cdot a^{\log_ax}}=\frac1{\ln a\cdot x}\)
\(f(x)=|g(x)|\)
\(f^\prime(x)=\frac {g(x)}{|g(x)|}\cdot g^\prime(x)\)
\(f(x)=\ln(g(x))\)
\(f^\prime(x)=\frac{1}{g(x)}\cdot g^\prime(x)=\frac{g^\prime(x)}{g(x)}\)

Trigonometric derivatives:

Trigonometric derivativesWikipedia

  • \(\sin x\rightarrow\cos x\)
  • \(\cos x\rightarrow-\sin x\)
  • \(\tan x\rightarrow\sec^2x\)
  • \(\sec x\rightarrow\sec x\cdot\tan x\)
  • \(\csc x\rightarrow-\csc x\cdot\cot x\)
  • \(\cot x\rightarrow-\csc^2x\)
  • \(\arcsin x\rightarrow\frac1{\sqrt{1-x^2}}\)
  • \(\arccos x\rightarrow-\frac1{\sqrt{1-x^2}}\)
  • \(\arctan x\rightarrow\frac1{\sqrt{1+x^2}}\)
Second Derivative

Definition: The second derivative of \(f\) at \(x=a\) is the derivative of \(f^\prime(a)\), evaluated at \(x=a\).
We’ll learn later the graphical significance of \(f^{\prime\prime}(x)\).

Example

\(f(x)=5x^3\). Find \(f^{\prime\prime}(x),f^{\prime\prime}(3)\):
\(f^{\prime}(x)=15x^2\)
\(f^{\prime\prime}(x)=30x\Rightarrow f^{\prime\prime}(3)=90\)

In “physical” terms, if \(f(x)\) denotes distance, then \(f^\prime(x)\) denotes velocity (change of distance over time), and \(f^{\prime\prime}(x)\) denotes acceleration (change of velocity over time)


May 15 Tirgul. Links to the board and the recording.
[Incomplete]


May 17 Lecture. Links to the board and the recording.
[Incomplete]